Gas Volumes Q

1 3.0 dm³ of sulfur dioxide are reacted with 2.0 dm³ of oxygen according to the equation:

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

What volume of sulfur trioxide (in dm³) is formed? (Assume the reaction goes to completion and all gases are measured at the same temperature and pressure.)

A 5.0 B 4.0 C 3.0 D 2.0

 $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}$

2

Hydrogen and chlorine react according to the equation above. What will be the result of the reaction between 200 cm³ of H₂ and 150 cm³ of Cl₂? (all gas volumes measured at the same temperature and pressure)

А	350 cm ³ of HCl	В	$150 \text{ cm}^3 \text{ of HCl} \text{ and } 50 \text{ cm}^3 \text{ of H}_2$
С	$200 \text{ cm}^3 \text{ of HCl} \text{ and } 50 \text{ cm}^3 \text{ of Cl}_2$	D	$300 \text{ cm}^3 \text{ of HCl and } 50 \text{ cm}^3 \text{ of H}_2$

3 According to the equation: $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$ what volume of air (20 % O₂) is required to react with 10 dm³ of SO₂?

A 2 d	m ³ I	В	5 dm^3	С	10 dm ³	D	25 dm^3
-------	------------------	---	------------------	---	--------------------	---	-------------------

4 Equal **volumes** of oxygen and hydrogen are reacted in a closed container. After the reaction is complete, the container will contain

A	water and oxygen only	В	water and hydrogen only
С	water only	D	water, hydrogen and oxygen

5 Chlorine was first prepared by by the reaction of hydrochloric acid with manganese(IV) oxide: $4HCl_{(aq)} + MnO_{2(s)} \rightarrow Cl_{2(g)} + MnCl_{2(aq)} + 2H_2O_{(l)}$

In a repetition of the original chlorine preparation, a solution of hydrochloric acid containing 14.6 g of hydrogen chloride reacted completely with manganese(IV) oxide.

(a) Calculate how many moles of hydrogen chloride reacted. [1] 0.4

(b) Calculate the volume of chlorine produced at 90KPa and 35° C. [2] Moles Cl₂ = 0.1 V = 2.85dm³

6 A 12.6 g sample of propene undergoes combustion: $2C_3H_{6(g)} + 9O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(l)}$ Calculate the volume of carbon dioxide that would be produced from this combustion at 100KPa pressure and 20^oC. [2]

Moles propene = 0.3Moles CO₂ = n = 0.9V = 21.92dm³

Gas Volumes Q

7	A 1.20 dm ³ sample of helium gas has a pressure of 4.67 x 10^4 Pa at 300 K. What pressure will the sample exert if the volume is changed to 1.60 dm ³ and the temperature is changed to 400 K?							
	A 4.67 x 10 ⁴ Pa	В	3.47 x 10 ⁴ Pa	C	2.63 x	x 10 ⁴ Pa	D	8.27 x 10 ⁴ Pa
8	The temperature of 420 cm ³ hydrogen gas is changed from 20.0 °C to -20 °C at constant pressure. What is the final volume?							stant pressure. What
	A 363 cm ³	В	392 cm ³		С	406 cm ³	D	486 cm ³
9	2.00 mol of helium at a temperature of 27 °C and a pressure of 3.00 atm (304 kPa) may be contained in a vessel of what volume?							nay be contained in a
	A $6.1 \times 10^{-2} \text{ dm}^3$	В	1.48 dm ³		С	4.48 dm ³	D	16.4 dm^3
10	A 0.365 g sample of a comolar mass?	ommon	anaesthetic has a	volu:	me of 2	25 cm ³ at 35 °C	C and 98	8.6 kPa. What is its
	A 42.1	В	40.8		С	39.9	D	4.79
11	11 A certain gas has a density of 2.35 g dm ⁻³ at 30 °C and 96 kPa (0.95 atm). The molar mass of this gas will be closest to which of the following?							
	A 50	B	<u>60</u>		С	70	D	80
12	12 Magnesium metal reacts with hydrogen gas according to the following equation: $Mg + 2HCl \rightarrow MgCl_2 + H_2$							
	When excess hydrochloric acid is reacted with magnesium 100 cm ³ of hydrogen gas is collected at a temperature of 20 °C and a pressure of 1.08×10^5 Pa.							
	(a) Calculate the number of moles of hydrogen gas produced. [2]							[2]
4.43x10 ⁻³								
	(b) Calculate the mass	s of mag	gnesium that reac	ted.				[1]
0.106g								
13	13 When manganese(IV) oxide (MnO ₂) is heated strongly it decomposes: $3MnO_2 \rightarrow Mn_3O_4 + O_2$							
When 10.00 g of MnO_2 is heated what volume of oxygen (collected at 18 °C and 1.05 x 10 ⁵ Pa) is produced? [3]								
Moles $MnO_2 = 0.115$ Moles $O_2 = 0.0383$ Volume $O_2 = 883 \text{ cm}^3$								